Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Chemical Sciences for the New Decade: Volume 1: Organic and Natural Product Synthesis ; 1:161-172, 2022.
Article in English | Scopus | ID: covidwho-2197290

ABSTRACT

At the Center of Molecular Immunology (Havana, Cuba), the fusion protein SARS-CoV-2 S protein (RBD)-hFc was synthesized linking the receptor-binding domain (RBD) of the SARS-CoV-2 virus and the crystallizable fragment of a human immunoglobulin. This fusion protein was used in the construction of a diagnostic device for COVID-19 called UMELISA SARS-CoV-2-IgG. Given the relevance of this protein, the characterization of three batches (A1, A2 and A3) was carried out. The molecular weight of the protein was determined to be 120 kDa, using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Its isoelectric point was estimated between 8.3 and 9 by isoelectric focusing. The molecular integrity was evaluated by size exclusion liquid chromatography and SDS-PAGE after one year of the production of the protein;the presence of aggregates and fragments was detected. Batches A1 and A2 have a purity percentage higher than 95% and they can be used for the construction of new diagnostic devices. © 2022 Walter de Gruyter GmbH, Berlin/Boston.

2.
Appl Microbiol Biotechnol ; 106(24): 8183-8194, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2128587

ABSTRACT

The nucleic acid test is still the standard assessment for the diagnosis of coronavirus disease 2019 (COVID-19), which is caused by human infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition to supporting the confirmation of disease cases, serological assays are used for the analysis of antibody status and epidemiological surveys. In this study, a single Western blot strip (WBS) coated with multiple Escherichia coli (E. coli)-expressed SARS-CoV-2 antigens was developed for comprehensive studies of antibody profiles in COVID-19 patient sera. The levels of specific antibodies directed to SARS-CoV-2 spike (S), S2, and nucleocapsid (N) proteins were gradually increased with the same tendency as the disease progressed after hospitalization. The signal readouts of S, S2, and N revealed by the multi-antigen-coated WBS (mWBS)-based serological assay (mWBS assay) also demonstrated a positive correlation with the SARS-CoV-2 neutralizing potency of the sera measured by the plaque reduction neutralization test (PRNT) assays. Surprisingly, the detection signals against the unstructured receptor-binding domain (RBD) purified from E. coli inclusion bodies were not observed, although the COVID-19 patient sera exhibited strong neutralizing potency in the PRNT assays, suggesting that the RBD-specific antibodies in patient sera mostly recognize the conformational epitopes. Furthermore, the mWBS assay identified a unique and major antigenic epitope at the residues 1148, 1149, 1152, 1155, and 1156 located within the 1127-1167 fragment of the S2 subunit, which was specifically recognized by the COVID-19 patient serum. The mWBS assay can be finished within 14-16 min by using the automatic platform of Western blotting by thin-film direct coating with suction (TDCS WB). Collectively, the mWBS assay can be applied for the analysis of antibody responses, prediction of the protective antibody status, and identification of the specific epitope. KEY POINTS: • A Western blot strip (WBS) coated with multiple SARS-CoV-2 antigens was developed for the serological assay. • The multi-antigen-coated WBS (mWBS) can be utilized for the simultaneous detection of antibody responses to multiple SARS-CoV-2 antigens. • The mWBS-based serological assay (mWBS assay) identified a unique epitope recognized by the COVID-19 patient serum.

3.
Vaccinology and Methods in Vaccine Research ; : 95-131, 2022.
Article in English | Scopus | ID: covidwho-2035541

ABSTRACT

The persistence of centuries of malaria endemicity in developing countries to the emergence of new pandemics such as COVID-19 world-wide has necessitated the prioritization of vaccine development. Vaccine development begins from the selection of an antigenic target after which laboratory studies employing various appropriate techniques will be used to investigate the potential of such antigen using in vitro studies, animal models and controlled human infection models. Such techniques can equally be applied in the field during clinical development of vaccine candidates and post marketing surveillance of approved vaccines. The techniques described here brings together scientists from various disciplines and with various expertise and interests thus emphasizing that the development of vaccine requires a multi-disciplinary approach. Chapter 4 discusses the use of techniques such as the cloning of recombinant antigenic target, genetic attenuation of whole organism, enzyme-linked immunosorbent assay, western blot, flow cytometry and various immunogenicity assessment assays employed in evaluation of antigenic targets and vaccine candidates. The protocols for some of these techniques have also been presented here. © 2022 Elsevier Inc. All rights reserved.

4.
Physical Sciences Reviews ; 0(0):12, 2022.
Article in English | Web of Science | ID: covidwho-1808614

ABSTRACT

At the Center of Molecular Immunology (Havana, Cuba), the fusion protein SARS-CoV-2 S protein (RBD)-hFc was synthesized linking the receptor-binding domain (RBD) of the SARS-CoV-2 virus and the crystallizable fragment of a human immunoglobulin. This fusion protein was used in the construction of a diagnostic device for COVID-19 called UMELISA SARS-CoV-2-IgG. Given the relevance of this protein, the characterization of three batches (A1, A2 and A3) was carried out. The molecular weight of the protein was determined to be 120 kDa, using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Its isoelectric point was estimated between 8.3 and 9 by isoelectric focusing. The molecular integrity was evaluated by size exclusion liquid chromatography and SDS-PAGE after one year of the production of the protein;the presence of aggregates and fragments was detected. Batches A1 and A2 have a purity percentage higher than 95% and they can be used for the construction of new diagnostic devices.

5.
Biochem Biophys Rep ; 28: 101170, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1509587

ABSTRACT

SARS-CoV-2 has become a big challenge for the scientific community worldwide. SARS-CoV-2 enters into the host cell by the spike protein binding with an ACE2 receptor present on the host cell. Developing safe and effective inhibitor appears an urgent need to interrupt the binding of SARS-CoV-2 spike protein with ACE2 receptor in order to reduce the SARS-CoV-2 infection. We have examined the penta-peptide ATN-161 as potential inhibitor of ACE2 and SARS-CoV-2 spike protein binding, where ATN-161 has been commercially approved for the safety and possess high affinity and specificity towards the receptor binding domain (RBD) of S1 subunit in SARS-CoV-2 spike protein. We carried out experiments and confirmed these phenomena that the virus bindings were indeed minimized. ATN-161 peptide can be used as an inhibitor of protein-protein interaction (PPI) stands as a crucial interaction in biological systems. The molecular docking finding suggests that the binding energy of the ACE2-spike protein complex is reduced in the presence of ATN-161. Protein-protein docking binding energy (-40.50 kcal/mol) of the spike glycoprotein toward the human ACE2 and binding of ATN-161 at their binding interface reduced the biding energy (-26.25 kcal/mol). The finding of this study suggests that ATN-161 peptide can mask the RBD of the spike protein and be considered as a neutralizing candidate by binding with the ACE2 receptor. Peptide-based masking of spike S1 protein (RBD) and its neutralization is a highly promising strategy to prevent virus penetration into the host cell. Thus masking of the RBD leads to the loss of receptor recognition property which can reduce the chance of infection host cells.

6.
Front Bioeng Biotechnol ; 9: 755045, 2021.
Article in English | MEDLINE | ID: covidwho-1502273

ABSTRACT

Immunoassays are widely used for detection of antibodies against specific antigens in diagnosis, as well as in electrophoretic techniques such as Western Blotting. They usually rely on colorimetric, fluorescent or chemiluminescent methods for detection. Whereas the chemiluminescence methods are more sensitive and widely used, they usually suffer of fast luminescence decay. Here we constructed a novel bioluminescent fusion protein based on the N-terminal ZZ portion of protein A and the brighter green-blue emitting Amydetes vivianii firefly luciferase. In the presence of D-luciferin/ATP assay solution, the new fusion protein, displays higher bioluminescence activity, is very thermostable and produces a sustained emission (t1/2 > 30 min). In dot blots, we could successfully detect rabbit IgG against firefly luciferases, Limpet Haemocyanin, and SARS-CoV-2 Nucleoprotein (1-250 ng), as well as the antigen bound antibodies using either CCD imaging, and even photography using smartphones. Using CCD imaging, we could detect up to 100 pg of SARS-CoV-2 Nucleoprotein. Using this system, we could also successfully detect firefly luciferase and SARS-CoV-2 nucleoprotein in Western Blots (5-250 ng). Comparatively, the new fusion protein displays slightly higher and more sustained luminescent signal when compared to commercial HRP-labeled secondary antibodies, constituting a novel promising alternative for Western Blotting and immunoassays.

7.
Acta Pharm Sin B ; 12(3): 1523-1533, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1408245

ABSTRACT

The spread of coronavirus disease 2019 (COVID-19) throughout the world has resulted in stressful healthcare burdens and global health crises. Developing an effective measure to protect people from infection is an urgent need. The blockage of interaction between angiotensin-converting enzyme 2 (ACE2) and S protein is considered an essential target for anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs. A full-length ACE2 protein could be a potential drug to block early entry of SARS-CoV-2 into host cells. In this study, a therapeutic strategy was developed by using extracellular vesicles (EVs) with decoy receptor ACE2 for neutralization of SARS-CoV-2. The EVs embedded with engineered ACE2 (EVs-ACE2) were prepared; the EVs-ACE2 were derived from an engineered cell line with stable ACE2 expression. The potential effect of the EVs-ACE2 on anti-SARS-CoV-2 was demonstrated by both in vitro and in vivo neutralization experiments using the pseudovirus with the S protein (S-pseudovirus). EVs-ACE2 can inhibit the infection of S-pseudovirus in various cells, and importantly, the mice treated with intranasal administration of EVs-ACE2 can suppress the entry of S-pseudovirus into the mucosal epithelium. Therefore, the intranasal EVs-ACE2 could be a preventive medicine to protect from SARS-CoV-2 infection. This EVs-based strategy offers a potential route to COVID-19 drug development.

8.
Methods Mol Biol ; 2099: 21-37, 2020.
Article in English | MEDLINE | ID: covidwho-1292545

ABSTRACT

The coronavirus spike envelope glycoprotein is an essential viral component that mediates virus entry events. Biochemical assessment of the spike protein is critical for understanding structure-function relationships and the roles of the protein in the viral life cycle. Coronavirus spike proteins are typically proteolytically processed and activated by host cell enzymes such as trypsin-like proteases, cathepsins, or proprotein-convertases. Analysis of coronavirus spike proteins by western blot allows the visualization and assessment of proteolytic processing by endogenous or exogenous proteases. Here, we present a method based on western blot analysis to investigate spike protein proteolytic cleavage by transient transfection of HEK-293 T cells allowing expression of the spike protein of the highly pathogenic Middle East respiratory syndrome coronavirus in the presence or absence of a cellular trypsin-like transmembrane serine protease, matriptase. Such analysis enables the characterization of cleavage patterns produced by a host protease on a coronavirus spike glycoprotein.


Subject(s)
Coronavirus Infections/virology , Middle East Respiratory Syndrome Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Blotting, Western , Cell Line , Humans , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Protein Processing, Post-Translational , Proteolysis , Serine Endopeptidases/metabolism , Virus Internalization
9.
Front Plant Sci ; 12: 650820, 2021.
Article in English | MEDLINE | ID: covidwho-1201481

ABSTRACT

The increase in the world population, the advent of new infections and health issues, and the scarcity of natural biological products have spotlighted the importance of recombinant protein technology and its large-scale production in a cost-effective manner. Microalgae have become a significant promising platform with the potential to meet the increasing demand for recombinant proteins and other biologicals. Microalgae are safe organisms that can grow rapidly and are easily cultivated with basic nutrient requirements. Although continuous efforts have led to considerable progress in the algae genetic engineering field, there are still many hurdles to overcome before these microorganisms emerge as a mature expression system. Hence, there is a need to develop efficient expression approaches to exploit microalgae for the production of recombinant proteins at convenient yields. This study aimed to test the ability of the DNA geminiviral vector with Rep-mediated replication to transiently express recombinant proteins in the freshwater microalgal species Chlamydomonas reinhardtii and Chlorella vulgaris using Agrobacterium-mediated transformation. The SARS-CoV-2 receptor binding domain (RBD) and basic fibroblast growth factor (bFGF) are representative antigen proteins and growth factor proteins, respectively, that were subcloned in a geminiviral vector and were used for nuclear transformation to transiently express these proteins in C. reinhardtii and C. vulgaris. The results showed that the geminiviral vector allowed the expression of both recombinant proteins in both algal species, with yields at 48 h posttransformation of up to 1.14 µg/g RBD and 1.61 ng/g FGF in C. vulgaris and 1.61 µg/g RBD and 1.025 ng/g FGF in C. reinhardtii. Thus, this study provides a proof of concept for the use of DNA viral vectors for the simple, rapid, and efficient production of recombinant proteins that repress the difficulties faced in the genetic transformation of these unicellular green microalgae. This concept opens an avenue to explore and optimize green microalgae as an ideal economically valuable platform for the production of therapeutic and industrially relevant recombinant proteins in shorter time periods with significant yields.

10.
Viruses ; 13(4)2021 03 26.
Article in English | MEDLINE | ID: covidwho-1154536

ABSTRACT

The risk posed by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) dictates that live-virus research is conducted in a biosafety level 3 (BSL3) facility. Working with SARS-CoV-2 at lower biosafety levels can expedite research yet requires the virus to be fully inactivated. In this study, we validated and compared two protocols for inactivating SARS-CoV-2: heat treatment and ultraviolet irradiation. The two methods were optimized to render the virus completely incapable of infection while limiting the destructive effects of inactivation. We observed that 15 min of incubation at 65 °C completely inactivates high titer viral stocks. Complete inactivation was also achieved with minimal amounts of UV power (70,000 µJ/cm2), which is 100-fold less power than comparable studies. Once validated, the two methods were then compared for viral RNA quantification, virion purification, and antibody detection assays. We observed that UV irradiation resulted in a 2-log reduction of detectable genomes compared to heat inactivation. Protein yield following virion enrichment was equivalent for all inactivation conditions, but the quality of resulting viral proteins and virions were differentially impacted depending on inactivation method and time. Here, we outline the strengths and weaknesses of each method so that investigators might choose the one which best meets their research goals.


Subject(s)
COVID-19/virology , Disinfection/methods , SARS-CoV-2/radiation effects , Virion/radiation effects , Virus Inactivation/radiation effects , Disinfection/instrumentation , Hot Temperature , Humans , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Ultraviolet Rays , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/chemistry , Virion/genetics , Virion/physiology
11.
ACS Infect Dis ; 7(6): 1596-1606, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1135641

ABSTRACT

The presence of antibodies against endemic coronaviruses has been linked to disease severity after SARS-CoV-2 infection. Assays capable of concomitantly detecting antibodies against endemic coronaviridae such as OC43, 229E, NL63, and SARS-CoV-2 may help to elucidate this question. We developed a serum screening platform using a bead-based Western blot system called DigiWest, capable of running hundreds of assays using microgram amounts of protein prepared directly from different viruses. Characterization of the immunoassay for detection of SARS-CoV-2 specific antibodies revealed a sensitivity of 90.3% and a diagnostic specificity of 98.1%. Concordance analysis with the SARS-CoV-2 immunoassays available by Roche, Siemens, and Euroimmun indicates comparable assay performances (Cohen's κ ranging from 0.8874 to 0.9508). Analogous assays for OC43, 229E, and NL63 were established and combined into one multiplex with the SARS-CoV-2 assay. Seroreactivity for different coronaviruses was detected with high incidence, and the multiplex assay was adapted for serum screening.


Subject(s)
COVID-19 , Coronaviridae , COVID-19 Testing , Humans , Plant Extracts , SARS-CoV-2
12.
Exp Eye Res ; 205: 108527, 2021 04.
Article in English | MEDLINE | ID: covidwho-1116639

ABSTRACT

The purpose of this study was to evaluate the expression of the SARS-CoV-2 receptors ACE2 and TMPRSS2 in an immortalized human conjunctival epithelial cell line and in healthy human conjunctiva excised during ocular surgery, using Western blot, confocal microscopy and immunohistochemistry. The Western blot showed that ACE2 and TMPRSS2 proteins were expressed in human immortalized conjunctival cells, and this was confirmed by confocal microscopy images, that demonstrated a marked cellular expression of the viral receptors and their co-localization on the cell membranes. Healthy conjunctival samples from 11 adult patients were excised during retinal detachment surgery. We found the expression of ACE2 and TMPRSS2 in all the conjunctival surgical specimens analyzed and their co-localization in the superficial conjunctival epithelium. The ACE2 Western blot levels and immunofluorescence staining for ACE2 were variable among specimens. These results suggest the susceptibility of the conjunctival epithelium to SARS-CoV-2 infection, even though with a possible interindividual variability.


Subject(s)
COVID-19/genetics , Conjunctiva/metabolism , Epithelial Cells/metabolism , Gene Expression Regulation , Peptidyl-Dipeptidase A/genetics , Serine Endopeptidases/genetics , COVID-19/metabolism , COVID-19/pathology , Epithelial Cells/pathology , Humans , Immunohistochemistry , Peptidyl-Dipeptidase A/biosynthesis , RNA/genetics , RNA/metabolism , SARS-CoV-2 , Serine Endopeptidases/biosynthesis
13.
J Ethnopharmacol ; 273: 113871, 2021 Jun 12.
Article in English | MEDLINE | ID: covidwho-1042531

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Reduning injection (RDNI) is a patented Traditional Chinese medicine that contains three Chinese herbal medicines, respectively are the dry aboveground part of Artemisia annua L., the flower of Lonicera japonica Thunb., and the fruit Gardenia jasminoides J.Ellis. RDNI has been recommended for treating Coronavirus Disease 2019 (COVID-19) in the "New Coronavirus Pneumonia Diagnosis and Treatment Plan". AIM OF THE STUDY: To elucidate and verify the underlying mechanisms of RDNI for the treatment of COVID-19. METHODS: This study firstly performed anti-SARS-CoV-2 experiments in Vero E6 cells. Then, network pharmacology combined with molecular docking was adopted to explore the potential mechanisms of RDNI in the treatment for COVID-19. After that, western blot and a cytokine chip were used to validate the predictive results. RESULTS: We concluded that half toxic concentration of drug CC50 (dilution ratio) = 1:1280, CC50 = 2.031 mg crude drugs/mL (0.047 mg solid content/mL) and half effective concentration of drug (EC50) (diluted multiples) = 1:25140.3, EC50 = 103.420 µg crude drugs/mL (2.405 µg solid content/mL). We found that RDNI can mainly regulate targets like carbonic anhydrases (CAs), matrix metallopeptidases (MMPs) and pathways like PI3K/AKT, MAPK, Forkhead box O s and T cell receptor signaling pathways to reduce lung damage. We verified that RDNI could effectively inhibit the overexpression of MAPKs, PKC and p65 nuclear factor-κB. The injection could also affect cytokine levels, reduce inflammation and display antipyretic activity. CONCLUSION: RDNI can regulate ACE2, Mpro and PLP in COVID-19. The underlying mechanisms of RDNI in the treatment for COVID-19 may be related to the modulation of the cytokine levels and inflammation and its antipyretic activity by regulating the expression of MAPKs, PKC and p65 nuclear factor NF-κB.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/toxicity , Cell Line, Transformed , Chlorocebus aethiops , Computational Biology , Coronavirus 3C Proteases/metabolism , Coronavirus Papain-Like Proteases/metabolism , Cytokines/metabolism , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation , Protein Array Analysis , SARS-CoV-2/drug effects , Signal Transduction/drug effects , Vero Cells
14.
J Clin Med ; 9(12)2020 Nov 27.
Article in English | MEDLINE | ID: covidwho-1000300

ABSTRACT

Humoral immunity is critically important to control COVID-19. Long-term antibody responses remain to be fully characterized in hospitalized patients who have a high risk of death. We compared specific Immunoglobulin responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between two groups, intensive care unit (ICU) and non-ICU hospitalized patients over several weeks. Plasma specific IgG, IgM, and IgA levels were assessed using a commercial ELISA and compared to an in-house cell-based ELISA. Among the patients analyzed (mean (SD) of age, 64.4 (15.9) years, 19.2% female), 12 (46.2%) were hospitalized in ICU. IgG levels increased in non-ICU cases from the second to the eighth week after symptom onset. By contrast, IgG response was blunted in ICU patients over the same period. ICU patients with hematological malignancies had very weak or even undetectable IgG levels. While both groups had comparable levels of specific IgM antibodies, we found much lower levels of specific IgA in ICU versus non-ICU patients. In conclusion, COVID-19 ICU patients may be at risk of reinfection as their specific IgG response is declining in a matter of weeks. Antibody neutralizing assays and studies on specific cellular immunity will have to be performed.

SELECTION OF CITATIONS
SEARCH DETAIL